TOEPLITZ DETERMINANTS, MULTICRITICAL RANDOM PARTITIONS AND THE DPII HIERARCHY

Toeplitz determinants in random partitions

For any $\mathrm{N} \geq 1$, we consider the symbol $\varphi^{(\mathbb{N})}\left[\theta_{1}, \ldots, \theta_{\mathrm{N}}\right](z)=\varphi(z)=\mathrm{e}^{w(z)}$, with

$$
w(z)=v(z)+v\left(z^{-1}\right) \text { and } v(z)=\sum_{j=1}^{N} \frac{\theta_{j}}{\mathfrak{j}} z^{j}, \theta_{j} \in \mathbb{R}, z \in \mathrm{~S}^{\prime}
$$

The Toeplitz determinants associated to the symbol $\varphi(z)$ are defined as $D_{n}=$ $\operatorname{det}\left(T_{n}(\varphi)\right)$ with $T_{n}(\varphi)$ being the n-th Toeplitz matrix

$$
T_{n}(\varphi)_{i, j}=\varphi_{i-j}, \quad i, j=0, \ldots, n
$$

where for every $k \in \mathbb{Z}, \varphi_{k}$ is the k-th Fourier coefficient of $\varphi(z)$, namely

$$
\varphi_{k}=\int_{-\pi}^{\pi} e^{-i k \theta} \varphi\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}, \text { so that } \sum_{k \in \mathbb{Z}} \varphi_{k} z^{k}=\varphi(z) .
$$

17) Consider now on the set of all integer partitions the Schur measures

$$
\mathbb{P}_{\text {Sc. }}(\{\lambda\})=Z^{-1} s_{\lambda}\left[\theta_{1}, \ldots, \theta_{N}\right]^{2},
$$

where s_{λ} is the Schur function indexed by λ which can be computed as $s_{\lambda}\left[\theta_{1}, \ldots, \theta_{N}\right]=$ $\operatorname{det}_{i, j} h_{\lambda_{i}-i+j}\left[\theta_{1}, \ldots, \theta_{N}\right]$, with $\sum_{k \geq o} h_{k} z^{k}=e^{v(z)}$, and $Z=e^{\sum_{i=1}^{N}=\frac{\theta_{i}^{2}}{亡}}$.
Remark For $N=1$, with $\theta_{1}=\theta$, we have $\mathbb{P}_{\text {Sc. }}(\{\lambda\})=\mathbb{P}_{\text {P.pl. }}(\{\lambda\})=e^{-\theta^{2}}\left(\frac{\left.\theta^{\lambda}\right|_{F_{1}}}{\lambda!!}\right)^{2}$, where $|\lambda|$ is the size of λ and F_{λ} is the number of standard Young tableau of shape λ. [4] In this setting, denoting by $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)$ a generic integer partition and by $\lambda^{\prime}=\left(\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq 0\right)$ its conjugate partion (namely such that $\lambda_{j}^{\prime}=\left|i: \lambda_{i} \geq j\right| \mid$, we have the following characterization
$\boldsymbol{q}_{n}=\mathbb{P}_{\text {sc. }}\left(\lambda_{1}^{\prime} \leq n\right)=e^{-\sum_{j=1}^{N} \theta_{j}^{2} / j} D_{n-1} \quad$ and $\quad r_{n}=\mathbb{P}_{s c}\left(\lambda_{1} \leq n\right)=e^{-\sum_{j=1}^{N} \tilde{e}_{j}^{2} / \tilde{D}_{n-1}}$ where the Toeplitz determinant $\widetilde{\mathrm{D}}_{\mathrm{n}}$ is instead associated to the symbol $\widetilde{\varphi}(z)=\mathrm{e}^{\tilde{\tilde{x}}(z)}$ built up by taking $\tilde{\theta}_{i}=(-1)^{i-1} \theta_{i}$ and $\tilde{w}(z)=\tilde{v}(z)+\tilde{v}\left(z^{-1}\right)$ where $\tilde{v}(z)$ is nothing than $v(z)$ with θ_{i} replaced by $\tilde{\theta}_{i}$.

Multicritical limiting behavior
[4] Let $\theta_{i}=(-1)^{i+1} \frac{(\mathbb{N}-1)!(\mathbb{N}+1)!}{(N-i)!(\mathbb{N}+i)!} \theta$. Then the limiting behavior of \boldsymbol{r}_{n} is described by
$\lim _{\theta \rightarrow+\infty} \mathbb{P}_{S c}\left(\frac{\lambda_{1}-b \theta}{(\theta d)^{2 N+1}+1}<t\right)=F_{N}(t)=\operatorname{det}\left(1-\mathscr{K}_{A_{i N}}(t, \infty)\right), \quad b=\frac{N+1}{N}, d=\binom{2 N}{N-1}$
[6] The Frecholm determinant $F_{N}(t)$ satisfies
$\partial_{t}^{2} \log F_{N}(t)=-u^{2}\left((-1)^{N+1}(t)\right)$,
$\mathfrak{u}(\mathrm{t})$ solving the N -th member of the Painlevé II hierarchy with $\mathfrak{u}(\mathrm{t}) \underset{\mathrm{t} \rightarrow+\infty}{\sim} \mathrm{Ain}_{\mathrm{N}}(\mathrm{t})$.

Orthogonal polynomials on S^{1}

$$
\begin{aligned}
& \text { We consider the measure for } z=\mathrm{e}^{\mathrm{i} \alpha} \in \mathrm{~S}^{1} \text { given by } \\
& \qquad \mathrm{d} \mu(\alpha)=\varphi\left(\mathrm{e}^{\mathrm{i} \alpha}\right) \frac{\mathrm{d} \alpha}{2 \pi}=\mathrm{e}^{w\left(\mathrm{e}^{\mathrm{i} \alpha}\right)} \frac{\mathrm{d} \alpha}{2 \pi} .
\end{aligned}
$$

The family $\left\{\mathfrak{p}_{\mathfrak{n}}(z)\right\}_{n \in \mathbb{N}}$ of orthogonal polynomials on the unitary circle w.r.t. the measure $d \mu(\alpha)$ is a sequence of polynomials of increasing degree

$$
\mathfrak{p}_{\mathfrak{n}}(z)=\kappa_{n} z^{n}+\ldots \kappa_{0}, \kappa_{n}>0
$$

such that the following relation holds for any index k, h

$$
\int_{-\pi}^{\pi} \overline{p_{k}\left(e^{i \alpha}\right)} \mathfrak{p}_{h}\left(e^{i \alpha}\right) \frac{d \mu(\alpha)}{2 \pi}=\delta_{k, h} .
$$

The analogue monic orthogonal polynomials $\pi_{n}(z)$ are $\mathfrak{p}_{n}(z)=\kappa_{n} \pi_{n}(z)$. For every $n \geq 1$ the following formula holds

$$
\mathfrak{p}_{n}(z)=\frac{1}{\sqrt{D_{n} \mathrm{D}_{n-1}}}\left|\begin{array}{ccccc}
\varphi_{0} & \varphi_{-1} & \ldots & \varphi_{-n+1} & \varphi_{-n} \\
\varphi_{1} & \varphi_{0} & \ldots & \varphi_{-n+2} & \varphi_{-n+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\varphi_{n-1} & \varphi_{n-2} & \ldots & \varphi_{0} & \varphi_{-1} \\
1 & z & \ldots & z^{n-1} & z^{n}
\end{array}\right| \Longrightarrow \frac{D_{n-1}}{\mathrm{D}_{n}}=\kappa_{n}^{2} .
$$

Riemann-Hilbert problem For any fixed $n \geq 1$, the function $Y(z)=Y\left(z, n ; \theta_{i}\right)$ $\mathbb{C} \rightarrow \mathrm{GL}(2, \mathbb{C})$ has the following properties
(1) $Y(z)$ is analytic for every $z \in \mathbb{C} \backslash S^{1}$;
(2) $Y(z)$ has continuous boundary values $Y_{ \pm}(z)$ are related for all $z \in S^{1}$ through

$$
Y_{+}(z)=Y_{-}(z) J_{Y}(z) \text {, with } J_{\gamma}(z)=\left(\begin{array}{cc}
1 & z^{-n} e^{w(z)} \\
0 & 1
\end{array}\right) \text {; }
$$

(3) $Y(z)$ is normalized as $Y(z) \sim\left(I+\sum_{j=1}^{\infty} \frac{Y_{j}\left(n, e_{i}\right)}{z j}\right) z^{n \sigma_{3}}, z \rightarrow \infty$,
where σ_{3} denotes the Pauli's matrix $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
[3] The Riemann-Hilbert problem admits a unique solution $Y(z)$ written as

$$
Y(z)=\left(\begin{array}{cc}
\pi_{n}(z) & \mathscr{C}\left(y^{-n} \pi_{n}(y) e^{w(y)}\right)(z) \\
-\kappa_{n-1}^{2} \pi_{n-1}^{*}(z) & -\kappa_{n-1}^{2} \mathscr{G}\left(y^{-n} \pi_{n-1}^{*}(y) e^{w(y)}\right)(z)
\end{array}\right),
$$

where $\pi_{n-1}^{*}(z)$ is defined as the polynomial of the same degree of $\pi_{n-1}(z)$ such that $\pi_{n-1}^{*}(z)=z^{n} \overline{\pi_{n-1}}\left(\bar{z}^{-1}\right)$. and $(\mathscr{C} f(y))(z)$ is the Cauchy transform of f

$$
(\mathscr{C} f(y))(z)=\frac{1}{2 \pi i} \int_{s^{1}} \frac{f(y)}{y-z} d y .
$$

Moreover, $\operatorname{det}(Y(z)) \equiv 1$.
In particular, from the fact that $\operatorname{det}\left(Y\left(0, n ; \theta_{i}\right)\right)=1$ we obtain for every $n \geq$

$$
\frac{D_{n-2} D_{n}}{D_{n-1}^{2}}=1-x_{n}^{2}, \text { with } x_{n}=\pi_{n}(0) \in \mathbb{R} .
$$

The connection with the discrete Painlevé II hierarchy

We construct the solution of another Riemann-Hilbert problem, which has in particular z, n-independent jump matrix

$$
\Psi\left(z, n ; \theta_{i}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & k_{n}^{-2}
\end{array}\right) Y\left(z, n ; \theta_{j}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & z^{n}
\end{array}\right) \mathrm{e}^{w(z))^{\frac{\sigma_{3}}{2}}} .
$$

Thanks to that, the function $\Psi\left(z, n ; \theta_{i}\right)=\Psi(z, n)$ is proved to solve the linear system
$\Psi(z, n+1)=U(z, \mathfrak{n}) \Psi(z, \mathfrak{n}), \quad \partial_{z} \Psi(z, \mathfrak{n})=T(z, \mathfrak{n}) \Psi(z, \mathfrak{n})$
with

$$
u(z, n)=\left(\begin{array}{cc}
z+x_{n} x_{n+1} & -x_{n+1} \\
-\left(1-x_{n+1}^{2}\right) x_{n} & 1-x_{n+1}^{2}
\end{array}\right)=\sigma_{+} z+U_{0}(\mathfrak{n}), \quad T(z, n)=\sum_{k=1}^{2 N+1} T_{k}(n) z^{N-k},
$$

where $T_{1}(\mathfrak{n})=\frac{\theta_{N}}{2} \sigma_{3}$ and $T_{i}(\mathfrak{n})=-K(\mathfrak{n}) T_{2 N+2-i}(\mathfrak{n}) K(\mathfrak{n})^{-1}$, for $j=1, \ldots, N, T_{N+1}(\mathfrak{n})=-K(\mathfrak{n}) T_{N+1}(\mathfrak{n}) K(\mathfrak{n})^{-1}+\mathfrak{n} I_{2}$. This systems turns out to be a Lax pair for the discrete Painlevé II hierarchy. Indeed, the compatibility condition

$$
\sigma_{+}=\mathrm{T}(\mathfrak{n}+1, z) \mathrm{U}(\mathrm{n}, z)-\mathrm{U}(\mathrm{n}, z) \mathrm{T}(\mathfrak{n}, z)
$$

- gives a system of discrete (in \mathfrak{n}) equations for $\mathbb{T}_{k}^{\mathrm{i}}(\mathfrak{n}), \mathfrak{i}, \mathfrak{j} \in\{1,2\}$ for $k=1, \ldots, N+1$ that determines all of them in terms of $x_{n \pm j}, j=-N, \ldots, N$ recursively (on k), starting from the initial condition for $T_{1}(n)$.
- Plugging the form obtained for the last coefficient $T_{N+1}(\mathfrak{n})$ into the equation for $T_{N+1}(n)$ given above, it finally gives a nonlinear 2 N order discrete equation for χ_{n} which is the N -th equation of the discrete Painlevé II hierarch

$$
\text { For any fixed } N \geq 1 \text {, for the Toeplitz determinants } D_{n}, n \geq 1 \text {, we have the following recursion relation }
$$

$$
\frac{D_{n} D_{n-2}}{D_{n-1}^{2}}=1-x_{n}^{2}
$$

where x_{n} solves the 2 N order nonlinear discrete equation

$$
n x_{n}+\left(v_{n}+v_{n} \operatorname{Perm}_{n}-2 x_{n} \Delta^{-1}\left(x_{n}-(\Delta+I) x_{n} \operatorname{Perm}_{n}\right)\right) L^{N}(0)=0
$$

where L is a discrete recursion operator that acts as follows

$$
L\left(u_{n}\right)=\left(x_{n+1}\left(2 \Delta^{-1}+I\right)\left((\Delta+I) x_{n} \operatorname{Perm}_{n}-x_{n}\right)+v_{n+1}(\Delta+I)-x_{n} x_{n+1}\right) u
$$

and $L(0)=\theta_{N} x_{n+1}$. Here $v_{n}=1-x_{n}^{2}, \Delta$ denotes the difference operator $\Delta: u_{n} \rightarrow u_{n+1}-u_{n}$ and Perm m_{n} is the transformation
$\mathrm{N}=1$ In this case x_{n} solves the second order discrete equation

$$
\mathrm{dPII}_{1} \quad \theta_{1}\left(x_{n}^{2}-1\right)\left(x_{n+1}+x_{n-1}\right)=n x_{n} .
$$

By defining $\chi_{n}=(-1)^{n} \theta^{-1 / 3} \mathfrak{u}(t)$ with $t=(n-2 \theta) \theta^{-1 / 3}$ and taking the limit $\theta \rightarrow+\infty$, dPII scales to the Painlevé II equation $\mathfrak{u}^{\prime \prime}(\mathrm{t})=2 \mathbf{u}^{3}(\mathrm{t})+\mathrm{tu}(\mathrm{t})$ and the recursion for the Toeplitz determinants to $\partial_{\mathrm{t}}^{2} \log \mathrm{~F}_{1}(\mathrm{t})=-\mathfrak{u}^{2}(\mathrm{t})$. If equation $\mathfrak{u}^{\prime \prime}(t)=2 \mathfrak{u}^{3}(t)+t \mathfrak{t}(t)$ and the recursion for the
$N=2$ In this case x_{n} solves the fourth order discrete equation

$$
d P I_{2} n x_{n}+\theta_{1} v_{n}\left(x_{n+1}+x_{n-1}\right)+\theta_{2} v_{n}\left(x_{n+2} v_{n+1}+x_{n-2} v_{n-1}-x_{n}\left(x_{n+1}+x_{n-1}\right)^{2}\right)=0 .
$$

By scaling $\theta_{1}=\theta, \theta_{2}=\frac{\theta}{4}$, defining $x_{n}=(-1)^{n}\left(\frac{\theta}{4}\right)^{-1 / 5} u(t)$ with $t=\left(n-\frac{3}{2} \theta\right) \theta^{-\frac{1}{5} 4 \frac{1}{4}}$ and taking the limit $\theta \rightarrow+\infty$, dPII scales to the second equation of the Painlevé II hierarchy $u^{\prime \prime \prime \prime}-10 u\left(u^{\prime}\right)^{2}-10 u^{2} u^{\prime \prime}+6 u^{5}=-t u$ and the recursion for the Toeplitz determinants to $\partial_{\mathrm{t}}^{2} \log \mathcal{F}_{2}(t)=-\mathfrak{u}^{2}(t)$.

References

