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Toeplitz determinants in random partitions

For any N ≥ 1, we consider the symbol φ(N) [θ1, . . . , θN] (z) = φ(z) = ew(z), with

w(z) = v(z) + v(z−1) and v(z) =

N∑
j=1

θj

j
zj, θj ∈ R, z ∈ S1.

The Toeplitz determinants associated to the symbol φ(z) are defined as Dn =

det(Tn(φ)) with Tn(φ) being the n-th Toeplitz matrix

Tn(φ)i,j = φi−j, i, j = 0, . . . , n

where for every k ∈ Z, φk is the k-th Fourier coefficient of φ(z), namely

φk =

∫π
−π

e−ikθφ(eiθ)
dθ

2π
, so that

∑
k∈Z

φkz
k = φ(z).

[7] Consider now on the set of all integer partitions the Schur measures

PSc.({λ}) = Z−1sλ [θ1, . . . , θN]
2 ,

where sλ is the Schur function indexed by λ which can be computed as sλ [θ1, . . . , θN] =

deti,j hλi−i+j [θ1, . . . , θN], with
∑

k≥0 hkz
k = ev(z), and Z = e

∑N
i=1

θ2
i
i .

Remark For N = 1, with θ1 = θ, we have PSc.({λ}) = PP.Pl.({λ}) = e−θ2
(
θ|λ|Fλ
|λ|!

)2
,

where |λ| is the size of λ and Fλ is the number of standard Young tableau of shape λ.

[4] In this setting, denoting by λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) a generic integer partition

and by λ ′ = (λ ′
1 ≥ λ ′

2 ≥ · · · ≥ 0) its conjugate partition (namely such that

λ ′
j = |i : λi ≥ j|), we have the following characterization

qn = PSc.(λ
′
1 ≤ n) = e−

∑N
j=1 θ

2
j /jDn−1 and rn = PSc.(λ1 ≤ n) = e−

∑N
j=1 θ̃

2
j /jD̃n−1,

where the Toeplitz determinant D̃n is instead associated to the symbol φ̃(z) = ew̃(z)

built up by taking θ̃i = (−1)i−1θi and w̃(z) = ṽ(z) + ṽ(z−1) where ṽ(z) is nothing

than v(z) with θi replaced by θ̃i.

Multicritical limiting behavior

[4] Let θi = (−1)i+1 (N−1)!(N+1)!
(N−i)!(N+i)! θ. Then the limiting behavior of rn is described by

lim
θ→+∞PSc.

(
λ1 − bθ

(θd)
1

2N+1

< t

)
= FN(t) = det(1−KAiN|(t,∞)), b =

N+ 1

N
, d =

(
2N

N− 1

)−1

.

[6] The Fredholm determinant FN(t) satisfies

∂2
t log FN(t) = −u2((−1)N+1(t)),

u(t) solving the N-th member of the Painlevé II hierarchy with u(t) ∼
t→+∞ AiN(t).

Orthogonal polynomials on S1

We consider the measure for z = eiα ∈ S1 given by

dµ(α) = φ(eiα)
dα

2π
= ew(eiα)dα

2π
.

The family {pn(z)}n∈N of orthogonal polynomials on the unitary circle w.r.t. the mea-

sure dµ(α) is a sequence of polynomials of increasing degree

pn(z) = κnz
n + . . . κ0, κn > 0

such that the following relation holds for any index k, h∫π
−π

pk(eiα)ph(e
iα)

dµ(α)

2π
= δk,h.

The analogue monic orthogonal polynomials πn(z) are pn(z) = κnπn(z).

For every n ≥ 1 the following formula holds

pn(z) =
1√

DnDn−1

∣∣∣∣∣∣∣∣∣∣∣

φ0 φ−1 . . . φ−n+1 φ−n

φ1 φ0 . . . φ−n+2 φ−n+1
... ... . . . ... ...

φn−1 φn−2 . . . φ0 φ−1

1 z . . . zn−1 zn

∣∣∣∣∣∣∣∣∣∣∣
=⇒ Dn−1

Dn
= κ2n.

Riemann–Hilbert problem For any fixed n ≥ 1, the function Y(z) = Y(z, n; θi) :

C → GL(2,C) has the following properties

(1) Y(z) is analytic for every z ∈ C \ S1;

(2) Y(z) has continuous boundary values Y±(z) are related for all z ∈ S1 through

Y+(z) = Y−(z)JY(z), with JY(z) =

(
1 z−new(z)

0 1

)
;

(3) Y(z) is normalized as Y(z) ∼
(
I+

∑∞
j=1

Yj(n,θi)

zj

)
znσ3, z → ∞,

where σ3 denotes the Pauli’s matrix σ3 =

(
1 0

0 −1

)
.

[3] The Riemann–Hilbert problem admits a unique solution Y(z) written as

Y(z) =

(
πn(z) C

(
y−nπn(y)e

w(y)
)
(z)

−κ2n−1π
∗
n−1(z) −κ2n−1C

(
y−nπ∗

n−1(y)e
w(y)
)
(z)

)
,

where π∗
n−1(z) is defined as the polynomial of the same degree of πn−1(z) such that

π∗
n−1(z) = znπn−1 (z̄−1). and (Cf(y))(z) is the Cauchy transform of f

(Cf(y)) (z) =
1

2πi

∫
S1

f(y)

y− z
dy.

Moreover, det(Y(z)) ≡ 1.

In particular, from the fact that det(Y(0, n; θi)) = 1 we obtain for every n ≥ 1

Dn−2Dn

D2
n−1

= 1− x2n, with xn = πn(0) ∈ R.

The connection with the discrete Painlevé II hierarchy

We construct the solution of another Riemann–Hilbert problem, which has in particular z, n-independent jump matrix

Ψ(z, n; θi) =

(
1 0

0 κ−2
n

)
Y(z, n; θj)

(
1 0

0 zn

)
ew(z)

σ3
2 .

Thanks to that, the function Ψ(z, n; θi) = Ψ(z, n) is proved to solve the linear system

Ψ(z, n+ 1) = U(z, n)Ψ(z, n), ∂zΨ(z, n) = T(z, n)Ψ(z, n)

with

U(z, n) =

(
z+ xnxn+1 −xn+1

−(1− x2n+1)xn 1− x2n+1

)
= σ+z+U0(n), T(z, n) =

2N+1∑
k=1

Tk(n)z
N−k,

where T1(n) =
θN
2
σ3 and Tj(n) = −K(n)T2N+2−j(n)K(n)

−1, for j = 1, . . . ,N, TN+1(n) = −K(n)TN+1(n)K(n)
−1+nI2.

This systems turns out to be a Lax pair for the discrete Painlevé II hierarchy. Indeed, the compatibility condition

σ+ = T(n+ 1, z)U(n, z) −U(n, z)T(n, z)

• gives a system of discrete (in n) equations for T ij
k (n), i, j ∈ {1, 2} for k = 1, . . . ,N+ 1 that determines all of them

in terms of xn±j, j = −N, . . . ,N recursively (on k), starting from the initial condition for T1(n).

• Plugging the form obtained for the last coefficient TN+1(n) into the equation for TN+1(n) given above, it finally

gives a nonlinear 2N order discrete equation for xn which is the N-th equation of the discrete Painlevé II hierarchy.

For any fixed N ≥ 1, for the Toeplitz determinants Dn, n ≥ 1, we have the following recursion relation

DnDn−2

D2
n−1

= 1− x2n

where xn solves the 2N order nonlinear discrete equation

nxn +
(
vn + vnPermn − 2xn∆

−1 (xn − (∆+ I)xnPermn)
)
LN(0) = 0

where L is a discrete recursion operator that acts as follows

L(un) =
(
xn+1

(
2∆−1 + I

)
((∆+ I) xnPermn − xn) + vn+1 (∆+ I) − xnxn+1

)
u,

and L(0) = θNxn+1. Here vn = 1 − x2n, ∆ denotes the difference operator ∆ : un → un+1 − un and Permn is the

transformation
Permn : C

[
(xj)j∈[[0,2n]]

]
−→ C

[
(xj)j∈[[0,2n]]

]
P ((xn+j)−n⩽j⩽n) 7−→ P ((xn−j)−n⩽j⩽n) .

N=1 In this case xn solves the second order discrete equation

dPII1 θ1(x
2
n − 1)(xn+1 + xn−1) = nxn.

By defining xn = (−1)nθ−1/3u(t) with t = (n− 2θ)θ−1/3 and taking the limit θ → +∞, dPII1 scales to the Painlevé

II equation u ′′(t) = 2u3(t) + tu(t) and the recursion for the Toeplitz determinants to ∂2
t log F1(t) = −u2(t).

N=2 In this case xn solves the fourth order discrete equation

dPII2 nxn + θ1vn (xn+1 + xn−1) + θ2vn
(
xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)

2
)
= 0.

By scaling θ1 = θ, θ2 =
θ
4
, defining xn = (−1)n

(
θ
4

)−1/5
u(t) with t =

(
n− 3

2
θ
)
θ−

1
54

1
5 and taking the limit θ → +∞,

dPII2 scales to the second equation of the Painlevé II hierarchy u ′′′′−10u(u ′)2−10u2u ′′+6u5 = −tu and the recursion

for the Toeplitz determinants to ∂2
t log F2(t) = −u2(t).

Remark For N = 1 the result was already proved from different authors in different ways [1, 2, 5, 8].
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