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Toeplitz determinants in random partitions Orthogonal polynomials on gl

For any N > 1, we consider the symbol ™ [01,..., V) with We consider the measure for z = ¢'* € S given by

= ew(em)d—(x .
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The family {pn(z) nen of orthogonal polynomials on the unitary circle w.r.t. the mea-
sure du( o) is a sequence of polynomials of increasing degree

N oo . o A
w(z) =v(z) +v(z7") and v(z) = Z% )y 0;€R, z € s'. du(a) = @(e™) 5=
j=1

The Toeplitz determinants associated to the symbol @(z) are defined as D, =
det(Tw(@)) with T,,(¢) being the n-th Toeplitz matrix
o Pn(z) = knz +...Kp, Knp >0
Tn((p)i,j = Piy, L)= O) ceey
such that the following relation holds for any index k, h
where for every k € Z, @y is the k-th Fourier coefficient of ¢(z), namely
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, SO that Z Pzt = o(z).
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The analogue monic orthogonal polynomials 71, (z) are pn(z) = kn7n(2).

7] Consider now on the set of all integer partitions the Schur measures For every n > 1 the following formula holds

Ps. ((A)) = Z7's) [01,...,0N]%, o P11 ... @_ni1 P_n
P1 Po P-n+2 P_n+1

where s, is the Schur function indexed by A which can be computed as sy [01, ..., : : _ : :
ent Pna oo @0 @
n

02
detij ha it [01, ..., ON], with 3\, hzk = eV and Z = eXiti 1,
9|7\|F)\) ] v e e Zn_1 Z
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Remark For N = 1, with 87 = 0, we have Pg. ({A}) = PppL.({A}) = ( i
where |A| is the size of A and F, is the number of standard Young tableau of shape A.

Riemann—Hilbert problem For any fixed n > 1, the function Y(z) = Y(z,n;0;) :
C — GL(2,C) has the following properties

[4] In this setting, denoting by A = (A; > Ay > (1) Y(2) is analytic for every z € C\ S';

and by A" = (A; > A} > --- > 0) its conjugate partition (namely such that
= [i: A > jl), we have the following characterization

- > 0) a generic integer partition
(2) Y(z) has continuous boundary values Y (z) are related for all z € S! through

_v N g2/ v N 32~ —n w(z)
Gn =Psc (A} <n) =e 21%9D,; and 1 =Ps. (A <n) =e¢ 271%7D, 4, Yi(z) = Y_(2)]v(z), with Jy(z) = ((]) : 16 ) !

where the Toeplitz determinant D,, is instead associated to the symbol @(z) = e™?)
built up by taking 6; = (—1 )i_j 0; and W(z) =v(z) +v(z~") where v(z) is nothing
than v(z) with 0; replaced by 6.

(3) Y(z) is normalized as Y(z (I + ZOO (.9 ) Z"%3, z — oo,

where o3 denotes the Pauli’s matrix o3 = ((]) _O1>

[3] The Riemann—Hilbert problem admits a unique solution Y(z) written as

( T (2) € (y "ma(y)e™V) (2) )
—Kp 70 4 (2) _Kﬁ—fg(y_n”:—ﬂy)ew(y)) (z))°

where 7T7_;(z) is defined as the polynomial of the same degree of 7t,_(z) such that

Multicritical limiting behavior

T 4(z) = 2"y (z77). and (€f(y))(z) is the Cauchy transform of f
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' A1 — b0 N 41 2N
GEI-POO PSC' <m < t) — FN (t) — det(1_*%AiN|(t,oo))) b= N d (N _ ‘I) :

6] The Fredholm determinant Fy(t) satisfies

[4] Let 0; = (—1)t! NH G Then the limiting behavior of 1y, is described by 1 J f(y)

(€fly)) (z) = 5=

dy.
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Moreover, det(Y(z)) = 1.
In particular, from the fact that det(Y(0,n;0;)) = 1 we obtain for every n > 1

02 log F (1) = —2((— 1)V (1)), % — 12, with xn = 7 (0) € R.
n—I1
u(t) solving the N-th member of the Painlevé II hierarchy with w(t) ~ Ain(t).
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The connection with the discrete Painlevé II hierarchy

We construct the solution of another Riemann—Hilbert problem, which has in particular z, n-independent jump matrix

1 0 1T 0\ .,
Y(z,n;0;) = <O |<2> Y(z,n;65) <O 0 (27,

n

Thanks to that, the function W(z,n;0;) = W(z,n) is proved to solve the linear system
llj(z, n+ 1) — U(Z, n)qj(za Tl), az\P(Za Tl) — T(Z> n)\y(z, Tl)

Z4+ XnXnil  —Xnp )
=o,z+ Uyn T(z,n
_(1 _X12—H_])Xn ] _XTzl_H + 0( )) ( ) )

U(z,n) = (

where Ty(n) = Moz and T;(n) = —K(n) Tonsz(m)KM) 1 forj = 1,.. ., N, Tygr(n) = —K(m) Ty (m)K(n) ~'+nl,.
This systems turns out to be a Lax pair for the discrete Painlevé II hierarchy. Indeed, the compatibility condition

o, =Tn+1,z2)UMNn,z) —UMN,z)T(n,z)

e gives a system of discrete (in n) equations for T]?(n), i,j € {1,2} for k =1,...,N + 1 that determines all of them
in terms of xn+j,j = —N, ..., N recursively (on k), starting from the initial condition for T;(n).

e Plugging the form obtained for the last coefficient Ty 1(n) into the equation for Tyy1(n) given above, it finally

gives a nonlinear 2N order discrete equation for x,, which is the N-th equation of the discrete Painlevé II hierarchy:.

For any fixed N > 1, for the Toeplitz determinants D,,,n > 1, we have the following recursion relation

where x,, solves the 2N order nonlinear discrete equation
nx, + (vn + v, Permy — 2%, A7 (xy — (A + I)anermn)) LN0) =0
where L is a discrete recursion operator that acts as follows

L(un) = (Xnt1 (ZA_1 + 1) ((A+T) xnPermy —xn) + Vi1 (A4 1) — XnXny1) u

and L(0) = OnXny1. Herevy, =1 — xfl, A denotes the difference operator A : u,, — w41 — u, and Perm,, is the
transformation
Perm,: C [(Xi)jeno,m] — C [(Xi)je[[o,Znu]
P ((Xn+j)—n<)’<n) — P ((Xn—j)—ngjgn) .

In this case x,, solves the second order discrete equation

dPIl; 0 (xfl — 1) (Xne1 + Xno1) = NXp.

By defining xn, = (—1)"07"3u(t) with t = (n — 20)0~'/3 and taking the limit 8 — 400, dPI; scales to the Painlevé
II equation u”(t) = 2u3(t) + tu(t) and the recursion for the Toeplitz determinants to 02 log F1(t) = —u?(t).
N=2| In this case x,, solves the fourth order discrete equation

dPIl; My + 01V (Xnt1 + Xn1) + 02Vn (Xnt2Vnit + Xn—2Vn—1 — Xn(Xnt1 + Xn_1)?) = 0.

By scaling 8 =0, 0, = %, defining x, = (—1)" (%)_1/5 u(t) with t = (n — —9) 05435 and taking the limit 0 — 400,
dPII, scales to the second equation of the Painlevé II hierarchy u”” —10u(u’)? —10u?u” +6u® = —tu and the recursion
for the Toeplitz determinants to 0% log F2(t) = —u?(t).

Remark For N = 1 the result was already proved from different authors in different ways [1, 2, 5, §].
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